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INTRODUCTZION

A wide selection of literature is devoted to the problem of diffraction
of radio waves around the surface of the Earth; a review of the most recent

@

studies can be found in Academician B.A. Vvedenskij's article interest
in this question is justified in that, at short distances of the order of a
few hundred kilometres, refraction of radio waves in rhe jonized layers of

the atmosphere can be ignored, while diffraction plays the decisive role in

radio~wave propagation.

Despite the fact that a firm solution of the question of diffraction
from the globe has already been known for some decades, a practically
. applicable approximate solution has not, up to now, baen obtained. In the

present work we intend to fill this gap.




STATEMENT OF 1THE PROBLEM AND ITS SCLUTION IN SERIES FORM

3 By r, 9 and ¢ we mean spherical coordinates with their origin at the
% centre of the Earth. If we ignore the irregularities of the Earth's

3 surface, then its equation will take the form r = a, where a = Earth's

4y

:

radius. Let us place a vertical electric dipole (b > a) at the point

e

r=>b, 9 =0, Rejecting in the field components the time dependent facto:
wt

, We can express it -by the Hertz function U, which will depend only
r and on 9.

e

-

Having by k denoted the absolute value of the wave vector, w-
shall have, for the field in air, the expression

E : 2l gin X
r r sin 9 39 n 3y |
;o= - 1 3 (L
., oU
H = lk‘ae :
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while the remaining components of the field will equal zero, Similar

1 expressions will apply for the field within the earth.

The U function
must, where r >

a, satisfy the equation

&

¥

‘ AU+ k% = 0 (1,02)

; and the condition of radiation to infinity

?

: lim [ 2}9 - ikrU ] = 0 (1,03)
ar

b r > ©

If b >~ a, in such a way that the source (dipole) is above the Earth's
surface and not on the surface itsell, then at Point r =b, § = 0 the U
function must have the property:




ikR

+ Uk, (1,04) .

where

R = /rz + b2 - 2rb cos 9 (1,05)

is the distance from the source, while the U* function remains finite
when kR » O, On the Earth's surface the Hertz function U must satisfy
the limiting conditions guaranteeing continuity of the components E_ and

9
H@ at the interface.

If we denote the Hertz function inside the Earth as U, then these

limiting concditions will take the form
k2U = ky%Uy; g%—(ru) = g% (rU,) where r = a , (1,06)

The U, function must, when O < r < a (inside the Earth), satisfy an

equation similar to (1,02) and remain finite.

The value kp, introduced in (1,06) and later formulae, is determined

from the equation

kp2 = ek? + xf‘-’c‘-f’—! (1,07)

and the condition Im(k,) > U. 1In place of the conductance of the Earth o
it is convenient to bring in length 7, characterizing the Earth's specific

resistance, having assumed
c
I = o=, (1,08)

For sea water the value ot I varies from 0,05 em (very salt water)

to 2.5 cm (slighily salt wa’ .r); for the earth this length is hundreds
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and thousands of times greater.. If we bring in the complex dialectric

constant of the Earth

. A
n = g + i Tk (1,09)
then
k, = kv n. (1,10)

A solution of the problem posed in the form of series is well ‘Imown;

Here we inscribe the necessary formulae without dwelling on their derivation.

We assunme

o =/ B o5 g0 =/ e 6o, aa

. . 1 . .
where Jv(x) is the Bessel function, while H(v)(x) is a first order Hankel

function. These functions are connected by the relationship
. ' - = 1
v, e () v, (08 () i, (1,12)

Additionally, we introduce the particular specification for the

logarithmic derivative from wn(x)

x (x) = -2 (1,13)

As is seen from (1,01), the fiecld at the Earth's surface is

expressed by the values:

= . A
U = (U) ! U = [ar(ru)]rm' (1’14)




For these values we obtain the series:

(2n + 1)g_(kb)
U = = == ¥ — ~— P_(cos 8); (1,15)
n=o gn'(ka)- E;xn(kza)cn(ka)

(2n+1)g_(kb)y (k,a)
Uu's=-~- K L n_2 P (cos 9), (1,16)

kpb & \ Tk
n= (ka) E—xn(kza)cn(ka)

~
&
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ordered according to LeGendre's polynomials., Cur task consists of an

approximate summation of these series.

2.  SUMMATION FORMULA

fribursys Lo et b S e D DTl

The sums which we have to calculate have the form

Elis 300

r

W) Pv_i(cos 8). (2,01)

e e

ow <

In the Equ.(1,14), the function ¢(v) with an accuracy approaching the

factor equal to

; Cy-p (kD)
3 p(v) = — " : (2,02)
)y 060 = & x| (@) a)

TR
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In Equ. (1,15) it differs from (2,02) by the factor xv~i(k3a)'

For a direct calculation of the sum it would be necesssary to take

the number of terms approximately equal to 2ka, i.e. equal to double the

i b St e

3 number of waves present on the Earth's surface. Since this number is
3 P

enormoug, it is evident that an immediate summation is impossible.

TR

To compute the sum § it is necessary, having taken advantage of the fact

that ¢(v) is an analytical function, to convert this sum to an integral which
can be computed by one or other of the approximation methods. A similar
conversion was first proposed by Watson in 1918 and adopted by many authors.
However, all the authors attempted to apply the converted expression to the
sum of deductions, wereas our intention is to separate out the main terms

most easily subject to investigation and to estimate the remainder. In this

e
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method o. omputation the main terms are not predetermined.

For the completion of our conversion it was essential to keep in
mind the following genceral properties of the function ¢{v). It is an
analytic function from v, meromorphic in the right half-plane; it has
poles only in the first quarter, while in the fourth quarter it is
holomorphic. At iwnfinity ¢(v) declines so rapidly that all .the integrals

being investigated converge.

As seen in Equation (2,01) the LeGendre's funciions. can be expressed

by the function
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where F is the sign for the hypergeometric function. By G: and Pt;.
dencte the result of a change in G and in Pv-& = Pv_i(cos ¥) of the

value & in 1 ~ ¢, We shall then have

. .7 . . L
p 5 - 1 [:eweqz- Gt + e-1v8+17; Gv] (2,04)
v ————
#v 2 sin 9

As can be seen from (2,03), if v lies within a certain sector includ-
ing the negative axis, and if lv sin 9| is large, the function Gv (and

also Gs) approximately equal

N
G\) ~ \/ 5 (2,05)

Substituting (2,05) in (2,04), we obtain the known asymptotic expres-
sion for Pv—!' If B(v) denoted the first term in Equation (2,04)

B(v) = - GS| (2,06)
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one can substantiate the equation

i¢e= Da
Px = P I + 21 cos vnB(v) 2,07)

v v=

which we shall make use of later. We note that the function B(v) is

holomorphic in the right half-plan2.

We examine in the plane of the complex variable three contours.
Firstly, the loop C) around the origin of the coordinates alleviating
the positive material axis and essential in the positive direction
(anti-clockwise)., Secondly, the broken line C, encompassing the first
quadrant anc running from left to right (in its horizontal part passing
a little higher than the material axis). Thirdly, the straight line Cj3,
passing through .he origin of the coordinates, lying in the second and
fourth quadrants and inclined at a small angle to the imaginary axis;

this straight line runs from top to bottom.

We can write the sum S in the form

S = f vp (v) sec vnP*v_idv, (2,09)

G

1
2

since the integral on the right comes to deductions at the points

o=+ %-. Since the function ¢(v) is holomorphic in the fourth quadrant,

we can substitute Contour C; for Contours C, and C3 and write

-

j vop (v) sec vnP*v_!dv + J vg (v) sec vnP*v_idv. (2,09)
C, Cy

w
1
]
-

The normal conversion of the sum comes down to this: the integral
at C, is assumed to equal zero because of the smallness of the uneven
part of ¢(v) (its definition will be given below), and the integral at
C, boils down to the sum of deductions. but we shall take a step further
and break up C. into main term and correction [term]. Substituting in

this integral the expression (2,07) for P*v-i’ we shall have
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S = § + S, + Sy (2,10)
8§ = J vg (v)B(v) dv, (2,11)
C

S, = - % I vo(v) sec vie V" P - dv, (2,12)

Cy

i

S3= 3 [ ve (v) sec v"P*v—idv° (2,13)

¢

In lntegral $y the subintegral function is alieady without poles on
the material axis (and also in the fourth quarter), therefore Contours

C» and C, [sic) for it are cquivalent. We denote by C any contour equivalent

to C? and C;»

The presentation of the value S in the form of three integrals (2,10) is
accurate; in the derivation nothing was uneplected. But the definition of
integral S, and $; indicates that these integrals are minute in comparison
with S;. In truth, if we are to compute the integral as a sum of deductions
in the poles #(v) then we are convinced that, in relation to Sy, it will be

of the order of
I Ob[\!](ﬂ‘%) ,‘ (2,14)

Where v is closest toa the material axis of the pole 9(v). The imaginary

part of vy is positive and at high valuet of ka will be
. Y
tm(vq) - elka) 1Y, (2,15)

where « s @ number of the ordevr of unity (for the absolute conductor

¢ = 0.70). Since ka is a very large number, ¢f the order of millions




(for A = 40 m, ka = 1.,000.000), it is apparent that the value (2,15) will
he iarpe (for instance equal to 70), while the value (2,14) will be very
small.(In our problem 9 may not be close to n, since, then, in consequence
of the necessity to consider the effécts of the ionized layers of the
atmosphere, our equations would generally ceasé to be applicable). As
far as the integral Sy is concerned, its value is determined by the
uneven part of the function ¢f{v). But the unéven part of ¢(v) will be

of the order of

e?lky(l . (2,16)

And since the § syinary part k,a is positive and extremely large,

then tane value of /2,16) will be an inexpressibly small number.

The follow.ny physical picture gives a graphic presentation of the
smallness of lntegrals $, aad Sy. Integral S, is the amplitude of a wave
travetling without a break (as a result of a single diffraction) around
the world once or several times. Integral S3 is the amplitude of a wave
penettating right through the Earth with the attenuation normal to the
Earth. Obviously, both these integrals are minute in -comparison with the
ampli tude of a wave travelling from the scurce through the air by the

shorrest path,

Thus, with all accuracy attainable by the statement of the physical
problem, the sum S, determined by the equation (2,01), may be expressed
in the form of an integral Sy, which, after substituting for

the equation (2,06), takes the form

J v¢(v)elvec*vdv. 2,17)

3. CALCULATION OF THE HERTZ FUNCTION FOR THE ILLUMINATED REGIONS

If we understand by 9(v) the equation (2,02), then the connection

between sum S and the value Ua will he

2
U = = -/""‘" S, (3,01)
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Therefore our approximate expression for U, is written

.37
11— .
Ua = ze J V@(V)elv% G*Vdv (3)02)
nkab v 2 sin 9

The position of the main integration section. in Equation (3,02) will
depend on which point of the integral is being computed. Generally speaking,

the main section will lie close to v = Vo where

v = kh = k ab sin 9 (3,03)

Y a? + b2 - 2ab cos 9

The value hc is the length of the perpendicular dropped from the centre of
the Earth to a beam [of light] (i.e. to a straight linc joining the source

to the point of wbservation).

For an approxkimate computation of Integral Ua it is essential to find
for G*v and 9(v) the asymptotic expressions which will be applicable in
the main section. Since the values Vv, and v 9 are large in comparison with

unity, we can, in accordance with (2,05), assume

Gk = V/ % (3,04)

For the Hankel functions =ntering into 9(v) onc may attempt to use

Debye's expression

. G- 7
Cv-!(p) = = (3,05)

V I-or

roos J /1 - =4 (3,06)

where

-lu-
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As tar as the function 1”_,(kwu) is concerned, in the proximity of v =

I expression used 1w ity with sufficieat accuracy, is

K ¢ -~'/!'-—3'-i—. 08
vv-,( 1) i T (3,08)

.

tooexplain in what conditions the disparity (3,07) is used, we denote

v . the anele between the vertical at the point of observation and the

frection to the source and introuwuce the parameter
1
P " [k?a' ]3 cos v, (3.09)

It is oasy to ~ee that for v = , ¢ = ka, the disparity (3,07} i=

¥

equivalent to the cvndition such that p iz a large positive number. Such

Alues o poare applicable to the illuminated region, Values of p of the

arder ol upity (positive and nepative) are applicable to the twilight repiong

too the ahaded Tegion,

K

Wit pos Ui pives the edge of the geometric shadow (the khorizon line).

Sative and large values in relation to absolute p values are apgplicable
tn this varagraph we examine the condition of large positive valucs

v Lilluminated region); other conditions will be examined in subsequent
[

parias.

Whea pooc 1, as we have seen, Debye expressions are applicable to the

Hankel functions. Substituting them in (3,02) and using (3,04) and (3,08)

wee obtain the integpral

i | — i —
203 , N N N v ovody
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kb -
v‘V
W = [ \//l - = dp+ vy . (3,x.)
J o
ka
lv conditions where
kh cos y > 1, (3,12)

where b= b = o is the height of the source above the Earth, Equation (3,10)
can be computed according to the fixed phase method, obtaining the "reflect-

ing formula"

eiKR
R
where
R = vV ua' +b¥ - 2ab cos § (3,14)

is the distancece trom the source, while W is the "attenuation function",

which in our case is equal to

W - . (3,15)
k l/ kK2 .
1 + =/ 1 =~ — sin? y - sec
k? ko Y Y

The value of U“', determined by the series (1,16), diflers, in our

approximition, only by the congtant multiple {rom u’. namely
{

———— — et

o ! —MV _l_(__..‘ . .
ld . . ] s sin: y Uu . (3,16)

lhe last equation is correct, not only for the illuminated region,

but in 411 cases.

..12-.




I ¢cow —aon (3,12) is not achleved, then the denominator and subin-

topral vquation (3,10) will not be a slowly changing function. [If we

assume that the conditions are fulfilled,

o

» 2
: e B w3, (3,17)
h
. l -+ kR - .;_t (3,18)

(the aesult ol which is the disparity p >+ 1), thus the equation (3,10)
can be computed gpproximately by introducing a new variable
1
3 __,.__\?._
g no= /l - T (3’19)
; ka*
4
3 For the function W in (3,13) the approximate expression
; 3 kR ,.
}‘ . .
: -l =i==(u=n,)-
3 [ J'R 2 ) dl\ -
3 W= oo O \/—— Io U (3,20)
1 . K
i "
’ T :)‘hl.lill('(l ,mwi;u‘l';‘-
h .
booE R (3,21)

is the inclination ot the ray to the horizon and Contour I' is a straight

line passing through the point w = p, from the quarter in the second

3 quarter of the plane o (more precisely v = n,). The equation (3,20) can be
\ computed witheut further neglect and gives the known Weyl=-van der Pol
-
lormula, 11 we Lssume
]
2
0 L
F Y4 ok kR ! kR Y
NG . ik Ee oy TR (3,22)

u =] 3=
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then we shall have

4]
W= 9 e e OHU) [ eVda . (3.23)

H
10

In order to obrain, from our espressions Ua and Ua" the formula for
the tield, it is neeessary to differrutlate these expressions according
1) 0. But tne derivatives according to 9 are easy to compute, since, in
(3,13), it is possible to consider all multiples, apart from eLKR as

constant s,

4. ASYMPTOPIC ENPRESSTONS FOR THE HANKEL FUNCTION

Later, we shall have te investigate the case where the observation

point lies in the wvilight region,

This condition is characterized by the values of the p parameter
(positive and negative) of the order of unity. Since the disparity (3,07)
ceases 1o he uselul for these values of p in the main. section of integra-
tion, the Delye expressions (3,05) for the Hankel function become inappli-
cable and must be exhanged tor others. New expressions for the llankel
tunet ions, appropriate to our task, may be obtained from asymptotic expres-—
(3)

sions quoted in our former work and also from formulae in Watson's well

)

4 . . . .
known hnnk( ybut it is simpler to derive them direct,

Unknown expressions give a description of Hankel functions via the

funvtion w(t), determined by the integral

|
1 tz- '}' 2}
w() = = JO dz, (4,01)
i
wvhere the contour | oruns trom infinity to zero along the straight are
=2 /3 nd 1trom zero to infinity along the straight arce z = 0 (along

the positive material axis). The function w(t) satisfies the differential

.
et 1o

w'(t) tw(t) (4,02)

-.l[.—.‘




Wl the initial conditions

2/ 's
37/ (

w(0) = 1,0899290710 + i 0,6292708425,

1]
~

wirs
S

(4,03)

o ~i=
2V 6

w' () T
INE

0.7945704238 - i 0,4587454481.

i
(2
]

(SRR
~—

It is the entire transcendental function which breaks down into a

step series ot the form

wit) = w(©) |+ Ly L + e + P+
o 23 7 (2-5)(36) ~ (2°5:8)(36°9) "~ " f
(4,04)
. th t7 tlo
PO ST TG T Be G0y T } :

If we separate in w(t) the material and imaginary parts (for the

miterial t) and assume
w(t) = u(t) + iv(t) (4,05)

then u(t) and v(t) will be two independent integrals of the equation (4.02),

connected by the relationship
ut(Ov(t) = ule)v'(t) = 1 (4,006)

Awvmptotic expressions tor these tunetions (or large negative
values e obtained by separating the material and imaginary parts in the

cquat fons
o : o
14 _1/“0 /,i('t) /.

wit) = ¢ (=1t) (4,07)

...15..
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For large positive t values asymptotic expressions for u(t), v(t) and

their derivatives have the form:

’ 3/2
_1/1, -.j't

u(t) = t e u'(t) = te s (4,09)

2. y 3
RV YA T -

vay = £ Cov(e) = - -% et e . (4,10)

From the series (4,04) it is not difficult -to extract the formula

LN L
| Srred 1=

w | e 32 2e b v, (4,11)
( 2n ) n
5 i3

w | te J 0 03 ule) - iv(D)], (4,12)

which give an impression of the behaviour of w(t) in a complex plane.

We note that the function w(t) is expressed via the Hankel function

ol the order 1/3 by the tormula

L2 1 3

— i 5 , YRS
wit) = % e (- t)z Hﬁi) ( % (- t) / ] (4,13)
3

Having learned the major properties of w(t), we switch to the deri-
vation of the asymptotic expression for the Hankel function H(i)(p),

where v and y are large and close to each other, so that the relationship

V =

1 = (4,14)
Y p/2

remains Limited,

-6~




fhe Hanked funetion ”(i)(") assumes the integral representation

l{(i)(;)) - T%‘J UL AT (4,15)

c

where the contour € goes along the straight line Im(v) = - n from - ni - «

to a certain point v = v, (e.g. v, = " n/Y3 - in), then along the straight

line from v = v, tov = 0 and, {inally, along the material axis from zero

to infinity, We express, in accordance with (4,14), v through t and intro-

duce the variable integration
3 )
z = /g— v. (4,16)

Considering t and z to be finite and p to be large, we may displace the
subintegral function in (4,15) according to the negative (fractional) powef

of . Since in the main part the transformed S contour coincides with the T

contour, we can write

By virtue of the differential equation (4,02), the Sth derivative equals

w(")u) = clw'(t) + HLw(t). (4,19)

-17=
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ubstituting this expression in (4;18) and going over by Formula

Lot to the tunction opm 1 (p), we shall have

—

2

|

) 1/6 f2/3
Lv-f(”) = ~ i ( ! } / {w(t - E%'[ %:} [(t w'(c) + 4tw(t) ]+ ...}.
(4,20)

Differentiating this cxpression according to p when v is constant
and taking into account the dependence of t on p, we get the following

formula for the derivative:
]
( =

) -k 1 ) =3
- i [L,-} {w'(t)—m[%) [t + 9)w(t) = 4ew’ (£)) + }
(4,21)

We shall be making use of these expressions later,

5.  EXPRESSION OF THE HERTZ FUNCTION APPLICABLE IY THE TWILIGHT REGION

Wo transcribe Expression (3,02) for the Hertz function, replacing in it
the value Gﬁ by the approximate value v n/v and the value sin 9 in front of

the integral by the approximate value 9. We obtain

.3
1——

2 4 ivo
voo= ¢ J(p(v)c- W e (5,01)

kab v 2190 C

By the € contour we shall understand the C, contour described in Para.2,
or sope equivalent of it.-- The-main part of tiie~integrdtidn will, in our case
(i.e. for finite values of the p parameter), lie close to the point where

v = kd.

The funetion xv_1 (k,a) appearing in the expression (2,02) for ¢(v), we
can now replace, theretore, by the value of the expression (3,08) when v = ka,

alter whieh we shall have

(v“i(kh)
’P(V) == . (5302)
k
1 ik -2
Cv~l(ka) * G 1 7 Cv-i(ka)

-18-
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For the function Cv"i and its derivative we must take expressions wnich
willl be correct dn the proximity of v = ka, Such expressions were obtarnad
in the preceding paragraph. Leaving the main terms in (4,20) and (4,21),

we shall have

oy (ka) = - if ‘iz‘-‘-)l/(’w ). (5,03)

ooy (k@) = i 522 )"”"w(c), (5,04)
where t is linked to v by the relationship

v = ka +( ‘%‘)1/3 t. (5,05)

The numerator in (5,02) is obtained from (5,03) by substituting a for b

and t for t', where

kb 1/3

vo= kb +(F) et (5,06)

Comparing (5,05) and (5,06) we get a link between t and t'. But the

relationship h/a , where h = b - g, is a small value (we will consider it

k!

to be of the same order as (ka) ). Ignoring this value in comparison

ceeeeWith o unity, We dre able to write . . —— it e s e e e
t' = ot -y, (5,07)
where
kh
y = — (5,08)
()"
2

_19-




is a value proportional to the height of the source above the Earth. The
value y may be called the accepted altitude of the source. Thus, with

accuracy to terms of the order of h/a or (ka)—z/q, will be

: ) . ¢ ka y/°

: ¢,V_!(kb) = - i (-—2-) wit - y), (5,09)

E‘

4 where 1 is deter ;ned from (5,05) (in the multiple before w{tr - y) we

4 similarly substitute b for a).

i

g Substitutions (5,03), (5,04) and (5,09) in (5,02) give the approximate
E expression for ¢(v).

[f we assume for brevity

1/3 ?
L . ka k k
,. i (5 Vg 100

we shall have

Y e - )
w'(t) 1 qw(t)’ G,10)

o) = - (%)

Recalling the formulae (1,09) and (1,10) we can write the value q

\/(’:_I'Fi_x_z'
L oaa M3 2n
i (%)

in the form

SR TG TR T B T TR T e T R Re TR T R W e T R

q = A (5’12)
. ~ + Y ——
i e+ it
4
or, with the same accuracy - - ~—
¢
3 . ( N l/'l 1
¢ Q= \ . (5.13)

. A
\/(+l+lm

The last cxpression is rather more convenient for calculation.
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It remains for us now to substitute the value ¢(v) from (5,11) in the
tormula (5,01) and transfer it to the variable integration t. Making this
substitution, we can exchange the value /fT under the integral with the
constant value /PEE; and also write a in place of b in the multiple before

the integral. As a result we obtain a formula which may be written in the

form

.1
. -15
. Olk(l'o 4 /K eixt w(t - )’) dt (5 14)
W) - qu(t) ’

x o= ()7, (5,15)

which can be called the applied horizontal distance from the source,

ph e Al g

5 such that y and q have the value (5,08) and (5,13). Countour .C must embrace
;

4 all the poles of the subintegral function, as we shall see, all of them are
1 . .

: located in the first quarter of plane t.

: ln order graphically to present the relationship of the horizontal

and vertical scales in the variabies x and y, we shall compose an expression

for the parameter p, determined by the formula (3,09). From examiration of
a sriangle with its angles at the centre of the Earth, the source and the

poinge of observation, it is not difficult to extract the approximate

tormula

1
T ”
ka - X
_;; ( —E') cos y = X—EIX‘ . (5,16)

- st Sttt vy, .
_,---_nm—-..-—.-.-g..-mc.gmc~.-~

r;-. Later we shall

Thus, the equation for the horizon line i3 x =
require a link between the distance R from the source, considYred along a
straight line, and the horizovtal distance @ > h, i.e. (ka) h >y,

this link has the lorm:

kR = kad + (5,17)




whe ~o

7 3
= X X . X
Ya Tay T 9 12 ° (5,18)

6. STUDY OF THE EXPRESSION FOR THE HERTZ FUNCT1ON

The expression (5,i4) found for the Hertz function, may conveniently

be written in the form

Oikd{)
Ull = 29 * V(X’ Y, Q)’ (6)01)
where
-i- —
4 . ixt w(t -vy)
Vi, v, q) = ¢ V %‘ f e X W) = zw(t) dt. (6,02)
C

The value V, by analogy with the value W introduced earlier in (3,14),
can be called the attenuation factor. We shall establish the connection
between Voand V. Since, in the denominators of Formulae (3,13) and (6,01)
we can consider the vaiues of R and a9 as being equal one to another, we sha'l

obtain, in consequence ot (5,17):

W= Ve Mo, (6,03)

We now have to examine the expression (6,02) for V., We shall begin this

g - —————crimination ot the cdse where the value p is_positive and_large (illumina-

R

ted region). We have already examined this case from a Jdifferent approach
(Pora, 3). However, since formula (6,02) wac brought out by us for finite P

it is an interesting conclasion that it is true also for large values of p,

When po= 1, the main Part of the integration will lie with the larger
negative t (namely ¢lase to s = t = p). Using Expressions (4,07) and (4,08)

lor w and w' and using the tixed phase method, we obtain
b I
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7 - (‘i'“" 2
1 - id
p (6.04)
and, as a result of (v,03),
W - - 2 (6,05)
po- i3

lhe last expression practically coincides with (3,15). We note that if
« is ol the order ol unity or iy large, then for the applicability of the
fixed phase mothod the condition

If the

p > 1 suffices; if x is small then it is

necessary that y-’ > 2y, latter condition is not fulfilled, but

the condition

-

(6,06)

is, then the integral (6,02) may be calceulated by a different method.

In the asymptolic expression for w(t = y) a further simplification may be

made, after which the tntegral (6,02) takes the form

{(6,07)

Having taken as a variable integration the valwe Vv - t, we arrived at
. x ] . . - e rkay i .
an integral in the torm (3,20) in which | /=t = Gfa;/‘ ] and once again

get the Weyl = van der Pol formula with values of o and 1, equal to™ ~° ~

vm e ae -4 .4

[]
=2 ¢ .

(6,08)




We now proceed Lo o more interesting condition, when the value of p s a
posttive or negative number of the ovder of unity. As we know, this is the

twilight region, where the diffraction phenomena plays a major role.

If the value of x und y are of the order of unity, then the most
convenient method of computing the integral (6,02) is to present it in the
form ot the sum of deductions relating to the poles of the subintegral

function.

It tg = tg(q) signifies the roots of the equation

w'(t) - qw(t) = 0 (6,09)
then we shall have
. 7 - .
LZ clxts Wts = ¥y
Vix, ¥, q) =e 2 ¥ ny — i . (6,10)
s=] ts 1 wits)

The roots tg(q) are the essence of the function from the complex
parameter p. When q = 0 they revert to the root tg = tg(0) of the derivative
w'(t), but when q = = they revert to Root tg® = tg(=y. The values ty and ty

have Phase n/}, so that

o5 ooy 13
t! thfe T e, =t e (6,11)
We show here a module of the first few roots

s e N U
] 1.01879 2.33811
2 3.24820 4.08795
] 4.82010 5.52056
4 6.163731 6.78671
h 7.37218 7.94417




At large s values will be

At finite values of g, one may compute the roots using the differen-

tial equation

de | 1
—_—r Z e—— (6,13)
d ]

which is easily extracted from .4,03). Root t can be determined either as
the solution to (6,13), which, when ¢ = 0, reverts to t;, or as the solu-
tion which, when q = =, reverts to cso; both solutions coincide. From the
first definitio it is easy to construct for tg a series according to

rising degrees of ¢q; it will converge when |q| < /—Egl. From the second
delinition it is possible to construct a series according to falling
(negative) degrees of q; it will converge where |q| > | /7%: l. We are

not reproducing these series here. We note that the value ‘%, which at large

values uf |q| is close to q°, is not a root of Equation (6,09).

In conditions where y* <« 2 | v ts| we have the approximate equation

wit, =y)

s

which permits evaluation of the remote terms of series (6,10), At large
povalues, such that Jq] << | JFE;'I, approximately t, will equal tq(o)

which will equal l;. From here and fcom (6,14) it fgllows that th; series
(6,10) always converges.  However, if x is small or y large, then to compute

the sum ol the series may require a large number of terms.

In the shaded region, when the value of p is large and negative, the
seties (6,10) converges very quickly and its sum approximately boils down

to the Lirst ternm.

Our series (6,10) corresponds to che Watson series, but has the advan-

tage that the terms ol our series have simple expressions.
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Mt e d o

Our basic formula (6,02) permits investigation not only of extreme
courtions (large positive p - the illuminated region, large negative p -
the shaded region) but alse the intermediate conditions, in particular the
twilight region: While for the extreme conditions our formula does no more
than ttarify earlier known formulae (rfeflecting formula and Weyl - van der
Pol formula for the illuminated region and the Watson series for the shaded

region), for the twilight region it gives ¢ Sentially new results,

Particular interest is presented by the case where y and y are large,
while p is finite (short waves, twiliglit), This condition has .not been
investigated by anyone to date, and previously known formulae are inapplicable

to it. We shall derive here the approximate fortwlae which facilitate its
study.

We introduce the value
z = x ~ 7y, (6,15)

which is the reduced distance, calculated not from the source but from the

geometric shadow boundary. In the region of geometric shadew z > 0, in the
"vigible" region z < 0, We have

-y 2
= = - -z—-
p z_iix- 2 o+ 2y (6,15)

In our assumptions x is large, wiiile z is finite; therefore we shall
have approximately p = = z.

In the case under examination the main part of tke integration in

But with
y large and t linite, the asymptotic expression (4,07) will apply to the func-
tion w(t = y), which will give

Integral (6,02) will correspond to values of t of the order of unity.

. 3
UL I o
w(t-y)=e (y=-t) e (6,17)
or approximately
k!
1= "-l-; i%‘y 2‘i./)-’-t
wit ~y)=e 'y e . (6,18)
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'1
Substituting (6,18) in (6,02) and exchanging the value x’y* for unity

in the multipie in front of the integral, we shall have

.2 3/2
izy ,
V(xs¥,q) = e Vilx = 7y, q). (6,19)
where
n 1 eizt .
Vi(z,q) = — [ St o (6,20)

ST w'(t) = qu(t)

The terms discarded in (6,19) will, with finite z values, be ¢ the
order of 1/¢y (or 1/x).

Thus, in our case, the function V(x,y,q) from two arguments and from
Parameter q will come down to the function V(z,q) from one argument and from

the very same parameter. This is a considerable simplification,

We shali define the formula link.ng the attenuation function W to the

value V. We have the identity

3
? _
-—wo+

L[

2 3 -2t

where w, has the value (5,18). Discarding in (6,21) the last term, we

get from (6,03) and (6,19)

23
W = e Vy{(z,q) (6,22)

-

In this way, in our approximation, the attenuation functior W depends

on x and y enly owing to z =2 -+Vy ,

The function Vy(z,q) is the whole transcendental function from the
variable 4, For positive z values the integral (6,20) can be computed as

the sum ol deductions, which gives
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™ iZts

., > ¢ By
Vilz,q) = i 2/ 0 i AT (where z > 0, (6,23)

where tg ~ are the previously investigated roots of the equation (6,09).

Series (6,23) converges more quickly the larger z is. At large positive values
of z its sum boils down to the first term., For finite negative z (e.g. for

=2 <« 2z <0) lntegral (6,20) must be .computed by squaring. For large negative
values ol z one may compute the integral by the fixed phase method, at which

one obtains

Vi(z, q) = ——— (6,24)

and, as @ result of (6,22)

W = —, (6.25)

Keeping in mind that the approximation z = - p, we get a coincidence with
Formula (6,03).

In conclusion we note that our basic formula (6,02) may also be obtained
by a method of parabolic relation by M.A. Leontovich and applied by him(s) to
the derivation of the Weyl - van der Pol formula. Use of Leontovich's method
(with certain rvefinements), applied to this problem, will be examined by us in

a special article.

SUMMARY

The problem of the propagation of radio waves around the homogeneous
surface of the earth is investigated. The diffraction effects are considered
but the influence of the ionosphere is neglected. The aim of the paper is
to derive vormulae for the wave amplitude as a function of the elevation of
the source, tts distance from the point of observation (situated on the surface

of the ecarth), ot the wave length and ot the electrical properties of the soil,
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The main result is the derivation of an expression for the attenuation
factor of an integral. This expression is valid for all the values of
patameters, which are of practical interest. In the limiting cases the well
known formulac are obtained: The Weyl - van der Pol formila for the
illuminated region and the formula which corresponds to the first term in
Watson's series for the shaded region (the latter in a slightly corrected
form). Essentially new is the investigation of the region of the continuous
transition from the illuminated region to the shaded one. Methods for
numerical calculations of sums and integrals involved in the problem are

elaborated.
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